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Statistical Description of Contact-Interacting
Brownian Walkers on the Line
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The distribution of interval lengths between Brownian walkers on the line is
investigated. The walkers are independent until collision; at collision, the left
walker disappears, and the right walker survives with probability p. This
problem arises in the context of diffusion-limited reactions and also in the
scaling limit of the voter model. A systematic expansion in correlation between
neighbor intervals gives a series of approximations of increasing accuracy for
the probability density functions of interval lengths. The first approximation
beyond mere statistical independence between successive intervals already gives
excellent results, as established by comparison with direct numerical simulations.
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1. INTRODUCTION

Consider the following problem. An infinite collection of walkers move on
the real line. Each walker follows an independent Brownian motion until
collision. At collision, the left walker disappears, and the right walker sur-
vives with probability p. If the walkers are distributed homogeneously at
initial time, what is their distribution at time ¢ > 0? As special cases, note
that for p = 1, the right walkers always survive a collision and the resulting
process is called diffusion-coalescence process; for p =0, both walkers
disappear at collision and we get the so-called diffusion-annihilation
process. Here we investigate the situation with arbitrary p € [0, 1].

This problem arises in the context of diffusion-limited reactions in one-
dimension, where the reactants move randomly before reacting instantaneously
as A+ A — A with probability p and 4+ A4 - & with probability 1—p.
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This problem also arises in the scaling limit of the voter model (see, e.g.,
refs. 2, 5, 8, and 10), i.e., a system of spins (or voters) equipped with the
following dynamics. Each spin has a random clock with a Poisson distri-
bution with rate 1; when its clock rings the spin updates its opinion to the
one of its left or right neighbor picked at random. The positions of the
interfaces between blocks with equal spins move as the random walkers in
the problem above if one rescales space as A7/2 and time as 17!, and takes
the limit as 4 — oo; the number of possible opinions that a spin can take
corresponds to (2—p)/(1—p) and it is assumed that the opinions of the
initial blocks are randomly chosen.

In this paper, we propose a statistical theory for the problem of
random walkers on the line. Our approach is based on a systematic expan-
sion in correlation between neighbor intervals which provides a series of
approximations of increasing accuracy for the probability density functions
of interval lengths. As shown below, the first approximation beyond mere
statistical independence between successive intervals already gives results
which are in excellent agreement with the numerical simulation of the
original model—see below.

It is worth pointing out that the voter model has been studied by many
authors for specific values of p and under various simplifying assumptions
(see, e.g., refs. 2-5, §, 11, and 12). One of the most complete analysis is
that of Derrida and Zeitak® (see also Ref. 7), who have shown that the
voter model with an infinite number of colors (corresponding to diffusion-
coalescence in the scaling limit) can be reduced to the problem of com-
puting the Pfaffians of a family of matrices of increasing sizes; in particu-
lar, the positions of the N interfaces between consecutive blocks of spins
can be deduced from an 2N x 2N matrix. Furthermore, if the positions of
all the interfaces between successive blocks are known, one can in principle
deduce the positions of the N interfaces between consecutive blocks in the
voter model with finite number of colors. Practically, this is of course
undoable, and Derrida et al.*” had to make simplifying assumptions or
asymptotic expansions to proceed further. They also observed that the
system with two colors (corresponding to diffusion-annihilation in the
scaling limit) is the hardest situation to handle by their approach, in
the sense that the series they obtain diverge as p — 0. Our approach is an
alternative to Derrida et al’s which illuminates different aspects of the
problem by providing explicit and closed master equations for the first »
probability density functions of interval lengths.

Finally, a word about the numerical experiments we use to check the
statistical theory. The exact solution is inferred by simulating N Brownian
walkers with an independent noise, moving on a ring of size L, and interacting
appropriately at collision. We make sure that the effects of the finiteness of
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the ring do not affect the dynamics by keeping the largest of the distance
between the walkers, say, 4, much less than the length of the ring L. We
kept A/L <107 and as a rule we started with N = 10° walkers. Statistics
were computed by averaging over the ensemble of walkers on the ring; in
particular, the density » was obtained by bin-counting the interval lengths.

2. STATISTICAL DESCRIPTION AND CLOSURE APPROXIMATIONS

Let {L,(?)};.z denote the lengths between successive intervals between
the surviving walkers at time . A statistically homogeneous system is
such that the interval length between any two walkers is on the average
independent of the walker positions along the line, i.e., {L(?)};.; and
{L;. n()}ccz have the same law for arbitrary N € Z. This property is con-
served for all times if it is true initially, which we shall assume. In this case,
the single-time statistical properties of the walkers can be described by the
family of probability density functions, {n®(/,,..., I, £)} ¥_,, defined so that

L 1
f ---j*n<k>(1;,1;,...,l;)dzk..-dzl=P{L1(z)<11,...,Lk(z)<1k}. (1)
0

0

It is not difficult to show that the {n®}’s satisfy the following hierarchy of
equations:

k—1
n® =APn®+p N n® L L L)
i=1

i=

k .
+(1—p)<2 jol nEDC T L L =1, dl
i=1

—n®(], 1) —n® (L, l)>+(2—p) n(Hn®. Q)

where the arrow ““|” designates derivative with respect to the correspond-
ing argument evaluated at 0; terms like n**Y(..., 1, |,/;,,,...) give the
probability rates of respective collisions. We also defined

Agc) = a12111 _512112 ‘|‘512212 — =0

-1k

+07,,. 3

The mixed-derivative terms in this operator appear after a change of
variables from locations of the walkers to distances between them, and the
term APn™® in (2) accounts for diffusive motion of the intervals. The two
terms involving sums on the first and second lines correspond to creation
of a given state (i.e., a finite sequence of intervals with given lengths) in the
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process of collision of two walkers. Such a collision results either in their
coalescence (the first sum) or in their mutual annihilation (the convolution
terms). The first two terms in the equation on the third line correspond to
destruction of a given state via collision with an external walker from the
left or from the right. The last term is a simple renormalization term which
guarantees that integrals in (1) can be interpreted as probabilities (other-
wise there is a probability flux out of the system which arises because the
intervals disappear when the walkers collide). Since intervals of zero length
disappear, (7) must be solved with the absorbing boundary condition
n|,_, = 0. The infinite set of equations in (2) is not practical since the equa-
tion for the density of order k involve the densities of order k+ 1 and k+2.
Notice however that (2) admits self-similar solution of the type

n®ly,.., L, 1) = (4 mO(, 81, 1 [/ 30). @)

These solutions describe the long-time coarsening in the system and indi-

cate that the characteristic length grows as \ﬂ .

A systematic class of closure approximations for (2) with increasing
accuracy can be obtained as follows. At fixed time ¢, {L,(¢)};., can be
thought of as a stochastic process with discrete “time” k. We shall assume
that this process is s-Markov, where se N is a parameter which can be
increased to get better approximations, i.e., for any g e N,

P{Ly(#) €I |Lyi(2) =145, Lyip()= lr(s+q)}
=P{L,(t) e[| Ly () =1sy,..., Ly, (1) =1, )
where P{L,(¢) e [|C} denotes the probability that L,(¢) € I, conditional

on C. Next we show that for any s > 0 (5) allows one to obtain from (2) a
closed set of equations for the s+ 1 first probability density functions.

3. STATISTICAL INDEPENDENCE APPROXIMIATION

For s =0, it is easy to see that (5) implies statistical independence of
successive interval lengths,

n(k)(lla”-s Ika t) = n(ll, t) o 'n(lka t)’ (6)

where n(l, t) =n"(l, t) is the probability density function of the length of
an interval between two nearest walkers. Approximations of similar nature
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were previously used, e.g., in refs. 1, 4, and 9. Equation (6) allows to derive
from (2) the following equation for #:

n=n;+{1—=p)n(|,1t) Ll n(l',tyn(I=0U,t)dl'+pn(], t) n(, 1), @)

where as earlier the down arrow indicates derivative over the corresponding
argument evaluated at zero, n(|, ) = n,(0, t). Equation (7) admits a self-

similar solution of the form n(/, t) = (4¢)~* m(l/ \/47), with m satisfying
m"+2E m' +—j m(&) m(E—0) dC+—m 0, @®)

where we used m'(0) =2/(2— p), which can be obtained directly from the
hierarchy (2) with substitution (4) (this condition is also easily derived by
taking the first moment of (8) and using the normalization condition
jff mdé =1). The analytical solution of (8) is not readily available, but it
is rather elementary to solve this equation numerically. The results are
shown in Fig. 1 for p = 0 (annihilation), in Fig. 2 for p=2/3 (correspond-
ing to the scaling limit of the 4-color voter model), and in Fig. 3 for p=1
(coalescence).

The equation in (7) turns out to be exact if p =1 (coalescence), but is
unsatisfactory for all p € [0, 1). Furthermore the independence assumption
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Fig. 1. The self-similar density functions m and m, for the diffusion-annihilation process
(p=0). The dashed line corresponds to the statistical independence approximation, the solid
line to the nearest-neighbor approximation, and the circles, to direct simulation. There is only
one dashed curve since the independence approximation erroneously predicts that m =m,; in
contrast, the nearest-neighbor approximation correctly distinguishes between m and m, (the
graph of m, being shifted to the right compared to the one of m).
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Fig. 2. Same as in Fig. 1 for the 4-color Potts model (p =2/3).

(6) is always (i.e., for all p € [0, 1]) a poor approximation. Here, we quan-
tify the quality of an approximation via the probability density of colliding
intervals, i.e., the conditional probability density of an interval if its
neighbor is about to disappear,

n@ 1) n?( |, 1)
n(l,1)
As can be seen from Figs. 1-3, n, is not equal to n, indicating the presence

of correlations between successive intervals. These correlations are com-
pletely missed by the statistical independence approximation.
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Same as in Fig. 1 for the diffusion-coalescence process (p=1); in this case, the

predictions for m by both the independence and the nearest neighbour approximations are

exact, and the dashed line coincides with the solid line.
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4. NEAREST-NEIGHBOR APPROXIMATION

The next approximation beyond statistical independence amounts to
taking s =1 in (5); this is equivalent to assume that the conditional proba-
bility density to observe an interval of length /; with left (or right) neigh-
bors of respective lengths /,, /;,... depends on /, only, and it is easy to see
that under this assumption any n® with k> 2 can be expressed as follows
in terms of n®;

n(Z)(Ila L) n(2)(lza l3)

®) 1) =
n (119 l29 3) n(l2) s (10)
n(4)(11, 12’ 13, 14) _ n(z)(lla 12) }’l(z)(lz, l3) n(2)(13, l4),
n(ly) n(ly)

and so on for higher order density functions. An approximation of this
sort applied to a different hierarchy of equations for correlation functions
—which do not allow to deduce the domain-size distributions in any simple
manner—was proposed by Lin et al.'" Inserting (10) in (5) for k = 2 yields
the following closed equation for n®:

n? (L, L) =ni) —ni), +nf), + pr(l) n.(1) n(1)

+U—pﬁKU<ﬂlmUr4)mU)MhU)ﬂ

[0 1m0 o= 1) dl =, | ) ) =0 s 1)
+@-p) n() n®, (11

where n,(1) =n®(l, |)/n(}), n(l, | 1,) =n®,, ,)/n(l,). In self-similar form,
n®(l, 1, 1) = (40" m@(1, /. /41, 1,/./4t), this equation becomes

m@ —m$) +my) +2Em? +2nm P +6m®

2—-2p

+ﬂ<f: m (I, =1) m.(I) m(l, | 1) dl

+ [, 1y mty mty—1) dl

—m(ly | 1) m.(l,) —m.(l,) m(l, | 11)>+22Tp m.(l,) m.(1,) =0.
? (12)
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m(&|n) =m(E, n)/m(n), m (&) =mP(, |)/m(|) are the self-similar con-
ditional probability densities.

Equation (12) is not hard to solve numerically. As can be seen from
Figs. 1-3, the nearest-neighbor approximation is in excellent agreement
with the direct numerical experiments. It captures correctly both m and m,
for all values of ¢&, including the large values in the tails of the density
functions where the correct exponential decay is obtained.

As a further test of the nearest-neighbor approximation, we studied a
situation out of the self-similar regime. Namely, we solved (11) as an initial
value problem, with an initial condition chosen so that 7n,(/) has two well
defined peaks and there is no correlation initially between successive inter-
vals (such correlations will be built by the dynamics). Figure 4 shows snap-
shots in time of n(/, ¢) obtained from direct simulation and those predicted
by the nearest-neighbor approximation. As one can see there is virtually no
difference between the curves. The initial condition was chosen to illustrate
an interesting phenomenon. It is easy to notice that the solution has pro-
nounced humps at lengths equal to the multiples of the length of the second
peak. This happens because the walkers separated by a short interval have
a high probability to collide before the walkers separated by a long inter-
val; when this happens, the short interval disappears, and the two long
intervals merge and create an interval of double length.

5. CONCLUDING REMARKS

Based on (5), higher order closures are possible (which provide a sys-
tematic expansion in correlation). We didn’t pursue this any further since
the nearest-neighbor approximation is already excellent for description of
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Fig. 4. Relaxation of n(/, t) from some initial condition n,(/) for the diffusion-annihilation
process (p =0). The solid line corresponds to the nearest-neighbor approximation, circles—to
direct simulation.
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the domain-length statistics. Furthermore, this approximation captures not
only the long time self-similar regime, but also the evolution from an initial
configuration; this is unlike most approximations in the literature which
focus only on the self-similar regime.

Finally, we note that a class of more complicated models can also be
analyzed by means of the domain-length densities slightly modifying the
proposed framework. For example one can consider the systems with
nucleation where new walkers are injected in the system. Such modifica-
tions, however, require a closer look and will be considered elsewhere.
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